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The following problem appeared
on a 1985 nationwide physics
prize exam for university-level students
and was published with a solution as an
interesting question for discussion in a
first-year mechanics course because it
turns out to be far more complex than
expected. It became even more intriguing
for me when I realized that its creators
had, within the constraints implied, over-
looked a superior solution.
Here is the problem as it was origi-
nally presented:
Some physics professors indulge in
mountain climbing and have beenknown
to take students along. You, the student,
are standing on a 20-m wide horizontal
ledge with loose gravel on it. The coeffi-
cient of friction u (static and kinetic),
between you and the ledge, is 0.80. You
ask the professor to stand close to the
edge while you take the perfect picture
safely against -the mountain wall. The
professor slips and falls off the edge. You
immediately grab onto the climbing rope
which is tied onto the professor to brake
his fall. The next ledge is 30 m below.

You have many options to soften the fall
of the professor, such as

1. You can hold tightly to the rope and
be pulled over the edge too!

2. You can apply just so much braking
force on the rope that you remain station-
ary while the professor slides toward the
second ledge.

3. Hold tightly to the rope and let your-
self be pulled forward toward the edge,
but loosening your grip sufficiently be-
fore you reach the edge so as not to go
over the edge yourself.

Calculate the speed with which the pro-
fessor hits the lower ledge for the strategy
which damages the professor least and

saves you from falling off the upper
ledge.

Neglect the mass of the rope, the friction
of the rope on the edge, and assume you
and the professor have the same mass
(m).

F.L. Weichman’s answer can be out-
lined as follows. In the first time “seg-
ment,” the student applies as much re-
sistive force to the rope as possible with-
out accelerating himself (umg). Then,
after the professor has dropped 12.95m,
the student suddenly grabs very tightly
onto the rope, causing an inelastic col-
lision of sorts, absorbing some kinetic
energy and halving the velocity of the
professor. The student-professor system
then accelerates together, reaching a
maximum speed of 6.79 m/s just as the
professor touches down. At this point,
the student drops the rope and is decel-
erated steadily by the friction at his feet;
he comes to a stop at the very edge of
the ledge.

The oversight inherent in this solu-
tion is the result of presuming that the
resistive force applied on the rope and
professor by the student may not exceed
the friction between student and gravel;
in other words, the student, in this case,
controls only the friction between his
hands and the rope, causing this fric-
tional force to be umg in the first seg-
ment and an arbitrarily large value in the
second.

He need not, however, limit his ac-
tions to changing the strength of his grip
on the rope; the student can actively
apply any retarding force on the rope
(limited by his strength and endurance),
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even if it means pulling himself for-
wards along it. With this inmind, we can
now make the braking force applied in
the second segment a variable.

The other assumptions of Weichman's
solution are sound. It is clearly prefera-
ble to “store” some kinetic energy for
dissipation by the student after the pro-
fessor has landed, and it is the solution
that gives the student the largest veloc-
ity by the time the professor has traveled
30 m that will succeed in causing the
least possible damage to the professor.

There will be no more than three
segments of time with distinct forces
and accelerations. By making the time
periods variable, we solve a very gen-
eral solution without presuming that
any of the periods exist.

Segment 1. The student applies a
backwards force of umg to the rope for
an unknown time f; The professor’s
acceleration during this period (since
ma = mg - pumg: spatial values for each
of the two individuals will be positive in
the direction of motion) is thus a,p = (1
- n) g, and the student’s acceleration is
0.

Segment 2. The student pulls on the
rope with a tension F. He will be able to
continue doing this even if his velocity
becomes greater than that of the rope
and professor—it will be just as though
he were pulling himself forward along
a moving ski rope-tow. The student will
continue stealing momentum for time ,
until the professor lands. During the
second segment, the professor’s net ac-
celeration, due to gravity and the
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student’s pull, is a,p = g — F/m; that of
the student, due to friction and the rope’s
equal and opposite pull, is a5 = -ug +
F/m.

Segment 3. As the professor reaches
the lower ledge, the student drops the
rope and is on his own. In the remaining
distance on the upper ledge, then, the
student slows down with an accelera-
tion a3 = -pug due to friction. This will
take a time £;

With these parameters, we have only
four restrictions on the motion of stu-
dent and professor:

First, the professor must reach the
bottom of the drop exactly at the end of
the second segment: Ad| +A d, = 30m,
andeachAd=(v)t+ 12 at2, SO

(1’9‘111"12) tlapy)y+ 1/2“21”22] =

30m 6))

The best possible case for the
professor’s landing would be a zero ve-
locity. With the extra braking efficiency
in our present model, this can be easily
achieved, and will become our second
stipulation (if it was not possible, we
would simply get no solution to our
equations): Av; + Av, = 0, or

apt taypt, =0 )

Similarly, the student must come to a
rest, and preferably at the very brink of
the upper ledge; through analogous
logic, we get:

(V20,5 ’22) +(ays ) 3+ Vaasg ’32] =

20m 3)

ayglytaygty = 0 4)

Keeping the objective in mind—to
minimize damage to the professor—our
goal now becomes finding the values
that result in imparting the least accel-
eration (g’s) to the professor, as long as
the assumption of a zero final velocity
holds. Equation (3) is responsible for
ensuring a minimum acceleration.
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Substituting in the expressions for
a1p G5 @yp and azg and solving the
system of four equations for F, we geta
quadratic equation with a unique per-
missible solution of F = 2umg; our as-
sumption stands.

Solving for the other variables, we
see that the two net accelerations under-
gone by the student are the same (a,¢ =
-ayg), as are their durations (1, = t3).
Thus, in order to reach the maximum
peak velocity with the lowest accelera-
tions, the student travels exactly 10min
Segment 1 and 10 m in Segment 2. With
g=98 m/sz, the student’s maximum
velocity (at the end of Segment 2, as the
professor lands) is 12.5 m/s, while in
Weichman’s solution it is only 6.79 m/s.
Much more energy is converted to heat,
too; in both cases there is 20 m of umg
friction between the student and gravel,
but because the magnitudes of the accel-
erations in the second segment are
greater in this solution, more time can
be spent in the first segment: the student
lets 22.49 m of rope slip through his
hands with a frictional force of pmg,
instead of 12.95 m.

There is a small amount of kinetic
energy absorbed during the collision in
Weichman’s solution. The collision
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does not occur here, although it is con-
trary to the aim of reducing damage,
anyway, since the energy is presumably
absorbed by the pair’s bodies in the
sharp yank.

Finally, and most importantly, the
maximum acceleration of the student
ayg is only 0.8 g, and the maximum
acceleration of the professor a,pis now
only 0.6 g—quite a leisurely ride!

Note that each of the force and accel-
eration values is an average over its
respective segment; although the stu-
dent must obviously have an unusual
aptitude for perception of periods of
time, the force he applies during the
second segment need not be strictly con-
stant.

Further fun with this situation could
include dropping the assumption of
equal masses, or making the coefficient
of friction vary with speed. As well as
providing a good exercise in creative
problem solving and analysis of linear
dynamics, this question will undoubt-
edly help to reassure any apprehensive
climbers about the sport’s safety.
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